O concreto é então lançado sobre o local de aplicação, utilizando-se de equipamentos adequados, como bombas de concreto ou caçambas, de acordo com a logística da obra. Após o lançamento, procede-se à compactação do concreto, utilizando equipamentos vibratórios ou manuais, para garantir a eliminação de vazios e bolhas de ar.

Por fim, o concreto é acabado de acordo com as necessidades da obra, podendo incluir o nivelamento da superfície e a aplicação de acabamentos específicos, se necessário. Essa sequência de procedimentos assegura a qualidade e durabilidade do concreto ciclópico em suas diversas aplicações na construção civil.

25.6. 87879 CHAPISCO APLICADO EM ALVENARIAS E ESTRUTURAS DE CONCRETO INTERNAS, COM COLHER DE PEDREIRO. ARGAMASSA TRAÇO 1:3 COM PREPARO EM BETONEIRA 400L. AF_10/2022 (M2)

Para garantir uma aderência eficaz do reboco, é necessário realizar o chapisco na estrutura de concreto. A argamassa para essa etapa será preparada no traço 1:3, utilizando uma parte de cimento para três partes de areia média. O preparo da argamassa será realizado em uma betoneira de 400L, assegurando a homogeneidade e a consistência adequada da mistura. Antes da aplicação do chapisco, a superfície da estrutura de concreto passará por uma limpeza cuidadosa e umedecimento, favorecendo a aderência da argamassa. A aplicação do chapisco será realizada com o uso de uma colher de pedreiro, garantindo uma distribuição uniforme da argamassa sobre a superfície, com controle preciso da espessura. Esse processo visa criar uma base texturizada que facilite a aderência do reboco, proporcionando uma ancoragem sólida para os revestimentos subsequentes.

25.7. 87529 MASSA ÚNICA, PARA RECEBIMENTO DE PINTURA, EM ARGAMASSA TRAÇO 1:2:8, PREPARO MECÂNICO COM BETONEIRA 400L, APLICADA MANUALMENTE EM FACES INTERNAS DE PAREDES, ESPESSURA DE 20MM, COM EXECUÇÃO DE TALISCAS. AF_06/2014 (M2)

A argamassa sera preparada conforme o traço 1:2:8, composto por uma parte de cimento, duas partes de cal hidratada e oito partes de areia média. Esse

4

THILIPAL DE

traço proporciona uma mistura balanceada para diversas aplicações na construção civil. O preparo da argamassa será realizado de forma mecânica, utilizando uma betoneira de 400L. Esse método garante a homogeneidade e consistência adequada da mistura, além de otimizar o tempo de preparo, assegurando a qualidade do resultado final. Posteriormente, a aplicação da massa única em argamassa será feita manualmente, utilizando ferramentas apropriadas, como colheres de pedreiro ou desempenadeiras. A argamassa será aplicada de maneira uniforme sobre a superfície desejada, seguindo as especificações do projeto e respeitando as espessuras recomendadas. Após a aplicação, será realizado o nivelamento e alisamento da argamassa para garantir um acabamento adequado. Durante esse processo, serão tomados cuidados para evitar o excesso de argamassa e assegurar que a superfície fique plana e regular, conforme as exigências estabelecidas. Essas medidas visam garantir a qualidade e durabilidade do revestimento aplicado.

26. PAVIMENTAÇÃO

26.1. 100324 LASTRO COM MATERIAL GRANULAR (PEDRA BRITADA N.1 E PEDRA BRITADA N.2), APLICADO EM PISOS OU LAJES SOBRE SOLO, ESPESSURA DE *10 CM*. AF_07/2019 (M3)

O lastro de brita será aplicado sobre o terreno preparado para receber o piso poroso drenante, conforme indicado em projeto. Ele servirá como uma camada de suporte para o assentamento do piso, garantindo sua estabilidade e permitindo o adequado escoamento das águas pluviais.

26.2. 100323 LASTRO COM MATERIAL GRANULAR (AREIA MÉDIA), APLICADO EM PISOS OU LAJES SOBRE SOLO, ESPESSURA DE *10 CM*. AF_07/2019 (M3)

O lastro de areia será aplicado sobre o terreno preparado para receber o piso poroso drenante e os demais revestimentos, conforme indicado em projeto. Ele servirá como uma camada de suporte para o assentamento do piso, garantindo seu nivelamento e estabilidade.

W

26.3. COMP.02 PLACA/PISO DE CONCRETO POROSO/ PAVIMENTO PERMEAVEL/BLOCO DRENANTE DE CONCRETO, 40 CM X 40 CM, E = 6 CM, COLORIDO (M2)

O pavimento sera composto por blocos de concreto poroso, fabricados conforme as especificações técnicas estabelecidas. Esses blocos possuem uma estrutura que permite a passagem da água através de seus poros, promovendo a drenagem e a infiltração no solo. Ele será aplicado sobre uma base de lastro de brita e areia, garantindo a estabilidade e o correto funcionamento do sistema de drenagem. A instalação do pavimento permeável seguirá as etapas tradicionais de assentamento de blocos de concreto. Primeiramente, será preparada a base de lastro de brita e areia, que será compactada e nivelada. Em seguida, os blocos de concreto poroso serão assentados sobre a base, de forma alinhada e nivelada, garantindo a uniformidade e estabilidade do pavimento.

26.4. 96620 LASTRO DE CONCRETO MAGRO, APLICADO EM PISOS, LAJES SOBRE SOLO OU RADIERS. AF_08/2017 (M3)

O lastro de concreto magro será constituído por uma composição de cimento Portland, areia, prita e água. Essa mistura proporciona um concreto com baixa resistência mecânica, ideal para nivelamento e regularização do terreno, sem comprometer a integridade da estrutura final. Sua aplicação ocorrerá sobre o terreno devidamente compactado e nivelado, atuando como uma base sólida e uniforme para a construção.

26.5. 101731 PISO EM PEDRA ASSENTADO SOBRE ARGAMASSA 1:3 (CIMENTO E AREIA). AF_09/2020 (M2)

Antes do assentamento do piso em pedra Cariri, o lastro de concreto será devidamente preparado. Será realizada a limpeza da superfície para remoção de sujeira, poeira e resíduos. Em seguida, o lastro de concreto será nivelado e regularizado, assegurando uma base uniforme e estável para o assentamento das pedras. A argamassa será preparada na proporção de 1 parte de cimento para 3 partes de areia, conforme especificado. Os materiais serão misturados em um misturador mecânico ou manualmente até obter uma consistência homogênea e adequada para aplicação. Com a argamassa devidamente

preparada, as pedras Cariri serão assentadas sobre o lastro de concreto, seguindo o padrão de assentamento definido no projeto. Cada pedra será posicionada cuidadosamente, pressionando-se levemente para garantir uma aderência firme à argam assa.

26.6. C1123 REJUNTAMENTO C/ ARG. PRÉ-FABRICADA, JUNTA ATÉ 2mm EM CERÂMICA, ACINA DE 30x30 cm (900 cm²) E PORCELANATOS (PAREDE/PISO) (M2)

Antes de iniciar o processo de rejuntamento, é imprescindível proceder à limpeza da superfície de revestimento cerâmico, removendo qualquer vestígio de poeira, resíduos ou dutros materiais que possam comprometer a aderência do rejunte. Além disso, as juntas entre as cerâmicas serão inspecionadas, assegurando que estejar completamente limpas e livres de quaisquer detritos que possam prejudicar d resultado final. A argamassa pré-fabricada destinada ao rejuntamento será preparada, seguindo as instruções do fabricante. A quantidade necessária será cuidadosamente medida e misturada em um recipiente limpo, com a adição de água conforme as orientações de cada produto. A mistura será executada até atingir uma consistência homogênea e ideal para a aplicação. Com a argamassa pré-fabricada devidamente preparada, proceder-se-á à aplicação do rejunte nas juntas entre as cerâmicas. Utilizandose uma espátula ou desempenadeira de borracha, o rejunte será cuidadosamente pressionado nas juntas, preenchendo-as por completo e assegurando uma distribuição uniforme. Após a aplicação do rejunte, será realizado o acabamento final. Com o auxílio de uma esponja úmida, o excesso de rejunte será devidamente removido da superfície das cerâmicas, visando obter um acabamento limbo e uniforme. Esta etapa é crucial para evitar danos ao revestimento cerâmico e garantir a qualidade estética do trabalho final.

26.7. 98679 PISO CIMENTADO, TRAÇO 1:3 (CIMENTO E AREIA), ACABAMENTO LISO, ESPESSURA 2,0 CM, PREPARO MECÂNICO DA ARGAMASSA. AF_09/2020 (M2)

A preparação da argamassa será realizada de forma mecânica, garantindo a homogeneidade e qualidade do material. O cimento e a areia serão misturados em um misturador mecânico, seguindo a proporção de 1 parte de

cimento para 3 partes de areia. A mistura será executada até obter uma consistência adequada e homogênea. Com a argamassa devidamente preparada, será aplicada sobre a superfície previamente preparada e nivelada. A espessura da argamassa será de 2,0 cm, assegurando uma base sólida e uniforme para o piso. Ut lizando-se ferramentas apropriadas, a argamassa será distribuída de maneira uniforme por toda a área a ser revestida. Após a aplicação da argamassa, será realizado o acabamento liso do piso. Utilizando desempenadeiras adequadas, a superfície do piso será alisada e nivelada, garantindo um acabamento liso e uniforme em toda a área. Cuidados especiais serão tomados para evitar a formação de ondulações ou irregularidades na superfície do piso.

26.8. 104658 PISO PODOTÁTIL DE ALERTA OU DIRECIONAL, DE CONCRETO, ASSENTADO SOBRE ARGAMASSA. AF_05/2023 (M2)

O piso podotátil de alerta ou direcional, feito de concreto e assentado sobre argamassa, desempenha um papel crucial na garantia da acessibilidade e segurança de pessoas com deficiência visual em espaços públicos. Este tipo de piso é projetado com relevos táteis que alertam ou orientam os usuários sobre obstáculos, mudanças de direção ou a proximidade de locais específicos. Para sua execução, é necessário seguir um processo meticuloso e cuidadoso. Inicialmente, a superfície onde o piso será instalado é preparada, assegurandose de que esteja limpa, nivelada e livre de quaisquer irregularidades que possam comprometer sua funcionalidade. Em seguida, uma argamassa apropriada é aplicada sobre essa base preparada. As peças de concreto do piso podotátil são então assentadas sobre a argamassa de maneira precisa e alinhada, garantindo a disposição correta dos relevos táteis. Cada peça é posicionada de acordo com o layout e as especificações técnicas definidas no projeto, levando em consideração as necessidades de alerta ou direcionamento dos usuários. Após o assentamento das peças, é realizada uma inspeção minuciosa para garantir que todos os relevos táteis estejam corretamente posicionados e alinhados. Quaisquer ajustes necessários são feitos neste momento para garantir a eficácia do piso. Por fim, o concreto é devidamente curado e a superfície é limpa para remover quaisquer resíduos de argamassa. Assim, o piso podotátil estará pronto

para ser utilizado, proporcionando segurança e acessibilidade para todas pessoas que frequentarem o ambiente.

27. DRENAGEM

27.1. 102726 DRENO BARBACÃ, DN 50 MM, COM MATERIAL DRENANTE. AF_07/2021 (UN)

Os drenos tipo Barbacã são amplamente utilizados em sistemas de drenagem para captar e direcionar águas pluviais e subterrâneas, evitando acúmulos e infiltrações indesejadas nas estruturas.

O processo de instalação do dreno Barbacã terá início com a realização de uma escavação no local desejado, seguindo rigorosamente as especificações do projeto. A profundidade e o comprimento da vala serão dimensionados de acordo drenagem do terreno. Após a escavação, o dreno Barbacã será posicionado no fundo da vala de maneira que sua parte perfurada fique voltada para baixo, permitindo assim a captação eficiente da água. Em seguida, será feito o preenchimento ao redor do tubo com o material drenante selecionado, garantindo escoamento da água para o interior do dreno. Este processo assegura a eficácia do sistema de drenagem e a prevenção de possíveis problemas relacionados à umidade e infiltrações.

27.2. 94265 GUIA (MEIO-FIO) CONCRETO, MOLDADA IN LOCO EM TRECHO RETO COM EXTRUSORA, 15 CM BASE X 30 CM ALTURA. AF 06/2016 (M)

Antes de iniciar a execução das guias, é essencial realizar a demarcação e o nivelamento do local de acordo com as dimensões e alinhamentos estabelecidos no projeto. Todos os obstáculos que possam interferir na instalação das guias serão removidos, assegurando uma base adequada para a sua construção. Para a produção das guias com extrusora, serão empregados materiais de alta qualidade, incluindo cimento Portland, agregados miúdos e graúdos, água e aditivos, conforme as especificações técnicas. A mistura do concreto será preparada respeitando as proporções adequadas para garantir a resistência e durabilidade das guias. Posteriormente, as guias serão moldadas

in loco por meio de uma extrusora de concreto, equipamento que possibilita aplicação do material de forma contínua e uniforme. O concreto será alimentado na extrusora e depositado diretamente no local de instalação das guias, seguindo o traçado e dimensões estabelecidas no projeto. Após a extrusão do concreto, as guias serão niveladas e alisadas utilizando ferramentas apropriadas, visando um acabamento uniforme e estético. Em seguida, será iniciado o processo de cura do concreto, fundamental para garantir a resistência e durabilidade das guias.

27.3. 94266 GUIA (MEIO-FIO) CONCRETO, MOLDADA IN LOCO EM TRECHO CURVO COM EXTRUSORA, 15 CM BASE X 30 CM ALTURA. AF_06/2016 (M)

Antes de iniciar a execução das guias, é essencial realizar a demarcação e o nivelamento do local de acordo com as dimensões e alinhamentos estabelecidos no projetb. Todos os obstáculos que possam interferir na instalação das guias serão removidos, assegurando uma base adequada para a sua construção. Para a produção das guias com extrusora, serão empregados materiais de alta qualidade, incluindo cimento Portland, agregados miúdos e graúdos, água e aditivos, conforme as especificações técnicas. A mistura do concreto será preparada respeitando as proporções adequadas para garantir a resistência e durabilidade das guias. Posteriormente, as guias serão moldadas in loco por meio de uma extrusora de concreto, equipamento que possibilita a aplicação do material de forma contínua e uniforme. O concreto será alimentado na extrusora e depositado diretamente no local de instalação das guias, seguindo o traçado e dimensões estabelecidas no projeto. Após a extrusão do concreto, as guias serão niveladas e alisadas utilizando ferramentas apropriadas, visando um acabamento uniforme e estético. Em seguida, será iniciado o processo de cura do concreto, fundamental para garantir a resistência e durabilidade das guias.

28. CARAMANCHÃO 1

28.1. 96523 ESCAVAÇÃO MANUAL PARA BLOCO DE COROAMENTO OU SAPATA (INCLUINDO ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF_06/2017 (M3)

O processo de construção das sapatas inicia-se com a marcação precisar do local, seguindo as diretrizes do projeto estrutural da edificação. Em seguida os trabalhadores iniciam a escavação manual utilizando pás, enxadas e picaretas. O solo é retira do cuidadosamente, camada por camada, até atingir a profundidade e dimensões especificadas no projeto. Durante todo o processo de escavação, é fundamental manter o controle rigoroso da profundidade e do nivelamento do terreno, garantindo assim que as sapatas sejam construídas de acordo com as especificações estabelecidas. Além disso, para assegurar um ambiente de trabalho seguro e livre de obstruções, os entulhos e detritos resultantes da escavação são removidos do local. Em seguida, o fundo da sapata é nivelado e compactado adequadamente, preparando-o para receber a concretagem. Essa etapa é crucial, pois a base nivelada e compactada proporcionará a estabilidade necessária para a fundação da estrutura. Assim, a concretagem é realizada para formar a base sólida sobre a qual a edificação será apoiada, concluindo assim o processo de construção das sapatas.

28.2. 101616 PREPARO DE FUNDO DE VALA COM LARGURA MENOR QUE 1,5 M (ACERTO DO SOLO NATURAL). AF_08/2020 (M2)

Para garantir a adequada execução da sapata, é imprescindível que o fundo da vala seja devidamente compactado e nivelado.

28.3. 96620 LASTRO DE CONCRETO MAGRO, APLICADO EM PISOS, LAJES SOBRE SOLO OU RADIERS. AF_08/2017 (M3)

O lastro de concreto magro será constituído por uma composição de cimento Portland, areia, brita e água. Essa mistura proporciona um concreto com baixa resistência mecânica, ideal para nivelamento e regularização do terreno, sem comprometer a integridade da estrutura final. Sua aplicação ocorrerá sobre o terreno devidamente compactado e nivelado, atuando como uma base sólida e uniforme para a construção.

28.4. C1400 FORMA DE TÁBUAS DE 1" DE 3A. P/FUNDAÇÕES UTIL. 5 X (M2)

As tábuas serão confeccionadas em madeira de lei do tipo 3A., garantindo resistência e durabilidade adequadas para suportar as pressões exercidas pelo

ly

concreto. Cada tábua terá 1 polegada de espessura (aproximadamente 2,3 centímetros) para proporcionar a rigidez necessária. O comprimento e a largura das tábuas serão dimensionados conforme as dimensões da fundação a ser construída. Além disso as tábuas serão devidamente lixadas e niveladas, garantindo uma superfície lisa e uniforme para o despejo do concreto, o que contribui para a obtenção de uma superfície final de concreto sem imperfeições indesejadas.

A forma de tábuas de 1" de 3A. será montada no local da obra, formando o molde no formato da fundação desejada. Antes de despejar o concreto, será verificado se as tábuas estão devidamente alinhadas e niveladas, garantindo assim a precisão das dimensões da fundação.

Após o despejo do concreto, as tábuas serão deixadas no lugar até que o concreto atinja a resistência necessária para suportar sua própria carga. Em seguida, as tábuas serão removidas cuidadosamente, deixando exposta a fundação de concreto. Este processo permite obter uma fundação sólida e bem acabada, pronto para suportar a estrutura a ser construída sobre ela.

28.5. C1401 FORMA DE TÁBUAS DE 1" DE 3A. P/SUPERESTRUTURA - UTIL. 2 X (M2)

As tábuas serão confeccionadas em madeira de lei do tipo 3A., garantindo resistência e durabilidade adequadas para suportar as pressões exercidas pelo concreto. Cada tábua terá 1 polegada de espessura (aproximadamente 2,54 centímetros) para proporcionar a rigidez necessária. O comprimento e a largura das tábuas serão dimensionados conforme as dimensões da estrutura a ser construída. Além disso, garantindo uma superfície lisa e uniforme para o despejo do concreto, o que contribui para a obtenção de uma superfície final de concreto sem imperfeições indesejadas.

A forma de tábuas de 1" de 3A. será montada no local da obra, formando o molde no formato da estrutura desejada. Antes de despejar o concreto, será verificado se as tábuas estão devidamente alinhadas e niveladas, garantindo assim a precisão das dimensões.

Após o despejo do concreto, as tábuas serão deixadas no lugar até que o concreto atinja a resistência necessária para suportar sua própria carga. Em seguida, as tábuas serão removidas cuidadosamente, deixando exposta a estrutura de concreto.

28.6. 92762 ARMAÇÃO DE PILAR OU VIGA DE ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO UTILIZANDO AÇO CA-50 DE 10,0 MM - MONTAGEM. AF_06/2022 (KG)

A utilização de barras de aço CA-50 de 10,0 mm na armação de pilares ou vigas em estruturas de concreto armado é essencial para conferir resistência e estabilidade à edificação. Para isso, as barras serão cortadas e dobradas conforme as dimensões e o projeto estrutural, utilizando equipamentos especializados que garantem precisão e qualidade na conformação das armaduras. Após o processo de corte e dobra, as barras serão montadas de acordo com o projeto, posicionando-as corretamente para garantir a distribuição adequada das cargas e a conformidade com as especificações técnicas estabelecidas. Durante essa etapa, é crucial garantir que a disposição das barras atenda às exigências de segurança e resistência da estrutura. Para assegurar a integridade da armadura e evitar deslocamentos durante a concretagem, as barras serão amarradas entre si utilizando arame recozido. Esse procedimento é fundamental para manter a estabilidade das armaduras durante todo o processo de execução ca estrutura de concreto armado, contribuindo para a segurança e durabilidade da edificação.

28.7. 92759 ARMAÇÃO DE PILAR OU VIGA DE ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO UTILIZANDO AÇO CA-60 DE 5,0 MM - MONTAGEM. AF_06/2022 (KG)

A utilização de bar as de aço CA-60 de 5,0 mm na armação de pilares ou vigas em estruturas de concreto armado é essencial para conferir resistência e estabilidade à edificação. Para isso, as barras serão cortadas e dobradas conforme as dimensões e o projeto estrutural, utilizando equipamentos especializados que garantem precisão e qualidade na conformação das armaduras. Após o processo de corte e dobra, as barras serão montadas de acordo com o projeto, posicionando-as corretamente para garantir a distribuição

4

adequada das cargas e a conformidade com as especificações técnicas estabelecidas. Durante essa etapa, é crucial garantir que a disposição das barras atenda às exigências de segurança e resistência da estrutura. Para assegurar a integridade da armadura e evitar deslocamentos durante a concretagem, as barras serão amarradas entre si utilizando arame recozido. Esse procedimento é fundamental para manter a estabilidade das armaduras durante todo o processo de execução da estrutura de concreto armado, contribuindo para a segurança e durabilidade da edificação.

28.8. 94965 CONCRETO FCK = 25MPA, TRAÇO 1:2,3:2,7 (EM MASSA SECA DE CIMENTO/ AREIA MÉDIA/ BRITA 1) - PREPARO MECÂNICO COM BETONEIRA 400 L. AF_05/2021 (M3)

O concreto a ser preparado tem como objetivo atingir uma resistência característica à compres são de 25 MPa (megapascal) após 28 dias de cura. O traço adotado é de 1 parte de cimento para 2,3 partes de areia média e 2,7 partes de brita 1, considerando as proporções em massa seca. O preparo do concreto será realizado mecanicamente utilizando uma betoneira com capacidade de 400 litros. O processo consiste em adicionar os materiais na seguinte ordem:

- 1. Adicionar parte da água necessária à betoneira.
- 2. Acrescentar o cimento, seguido pela areia média e pela brita 1, respeitando as proporções do traço estabelecido.
- 3. Adicionar o restante da água de forma controlada, garantindo a consistência adequada da mistura.
- 4. Manter a betoneira em funcionamento até obter uma mistura homogênea e uniforme, assegurando que todos os materiais estejam completamente integrados.

28.9. 103670 LANÇAMENTO COM USO DE BALDES, ADENSAMENTO E ACABAMENTO DE CONCRETO EM ESTRUTURAS. AF_02/2022 (M3)

O concreto deve ser lançado de um ponto o mais próximo possível da posição final, através de sucessivas camadas, com espessura não superior a 50 cm, e com cuidados especiais para garantir o preenchimento de todas as

V

reentrâncias, cantos vivos, e prover adensamento antes do lançamento da camada seguinte. Em nenhuma situação o concreto deve ser lançado de alturas superiores a 2m. No caso de peças altas, e principalmente se forem estreitas, o lançamento deve se dar através de janelas laterais em número suficiente que permita o controle visua da operação. Em caso de ter concretos com suspeita de terem iniciado pega antes do lançamento devem ser recusados, o adensamento deve ser executada por equipamentos vibratórios mecânicos, para assim possa atingir a máxima densidade possível e a eliminação de vazios.

28.10. COMP.13 PÉRGOLA EM MADEIRA 2,00M (UN)

A pérgola será construída em madeira de alta qualidade, assegurando durabilidade e resistência às intempéries. Cada pérgola terá uma extensão de 2,00 metros, oferecerdo uma estrutura adequada para cobertura e sombreamento do espaço. O design da pérgola foi cuidadosamente elaborado para harmonizar com o ambiente, adicionando um aspecto estético agradável ao caramanchão.

28.11. 87879 CHAPISCO APLICADO EM ALVENARIAS E ESTRUTURAS DE CONCRETO INTERNAS, COM COLHER DE PEDREIRO. ARGAMASSA TRAÇO 1:3 COM PREPARO EM BETONEIRA 400L. AF_10/2022 (M2)

Para garantir uma aderência eficaz do reboco, é imprescindível realizar o chapisco. A argamassa para essa etapa será preparada no traço 1:3, composto por uma parte de cimento para três partes de areia média. O preparo da argamassa será cuidad osamente realizado em uma betoneira de 400L, garantindo assim a homogeneidade e a consistência adequada da mistura. Antes da aplicação do chapisco, a superfície da estrutura será submetida a uma limpeza minuciosa e um edecimento, favorecendo a aderência da argamassa. Em seguida, a aplicação do chapisco será conduzida com o uso de uma colher de pedreiro, assegurando uma distribuição uniforme da argamassa sobre a superfície, com controle preciso da espessura. Esse processo visa criar uma base texturizada que facilite a aderência do reboco, garantindo uma ancoragem sólida para os revestimentos subsequentes. Dessa forma, a execução adequada do chapisco é fundamental para garantir a qualidade e durabilidade do acabamento final da estrutura.

28.12. 87527 EMBOCO, PARA RECEBIMENTO DE CERÂMICA, EMARGAMASSA TRAÇO 1:2:8, PREPARO MECÂNICO COM BETONEIRA 400L, APLICADO MANUALMENTE EM FACES INTERNAS DE PAREDES, PARA AMBIENTE COM ÁREA MENOR QUE 5M2, ESPESSURA DE 20MM, COM EXECUÇÃO DE TALISCAS. AF_06/2014 (M2)

O emboço será preparado conforme as especificações técnicas estabelecidas, proporcio nando uma base sólida e nivelada para a aplicação do revestimento cerâmico. Para isso, a argamassa será composta no traço 1:2:8, utilizando uma parte de cimento, duas partes de cal hidratada e oito partes de areia média, garantindo resistência e aderência suficientes à superfície. Esse preparo será realizado mecanicamente, utilizando uma betoneira de 400L, para assegurar a homogene dade e consistência adequada da mistura, evitando variações na qualidade do emboço. Antes da aplicação, a superfície será limpa e umedecida para melhor aderência da argamassa, e então o emboço será aplicado manualmente sobre a superfície preparada, utilizando ferramentas adequadas, como dese mpenadeiras e colheres de pedreiro, permitindo um controle preciso da espessura e uniformidade do emboço.

28.13. C1867 PEDRAS NATURAIS DECORATIVAS, C/ARGAMASSA MISTA CIMENTO. CAL HIDRATADA E AREIA (M2)

Os pilares do caramanchão devem ser revestidos com filetes de Pedra Cariri, conforme especificado no projeto arquitetônico.

29. CARAMANCHÃO 2

29.1. 96523 ESCAVAÇÃO MANUAL PARA BLOCO DE COROAMENTO OU SAPATA (INCLUINDO ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF 06/2017 (M3)

O processo de con strução das sapatas inicia-se com a marcação precisa do local, seguindo as diretrizes do projeto estrutural da edificação. Em seguida, os trabalhadores iniciarn a escavação manual utilizando pás, enxadas e picaretas. O solo é retirado cuidadosamente, camada por camada, até atingir a profundidade e dimensões especificadas no projeto. Durante todo o processo de escavação, é fundamental manter o controle rigoroso da profundidade e do

nivelamento do terreno, garantindo assim que as sapatas sejam construídas de acordo com as especificações estabelecidas. Além disso, para assegurar um ambiente de trabalho seguro e livre de obstruções, os entulhos e detritos resultantes da escavação são removidos do local. Em seguida, o fundo da sapata é nivelado e compactado adequadamente, preparando-o para receber a concretagem. Essa etapa é crucial, pois a base nivelada e compactada proporcionará a estabilidade necessária para a fundação da estrutura. Assim, a concretagem é realizada para formar a base sólida sobre a qual a edificação será apoiada, concluindo assim o processo de construção das sapatas.

29.2. 101616 PREPARO DE FUNDO DE VALA COM LARGURA MENOR QUE 1,5 M (ACERTO DO SOLO NATURAL). AF_08/2020 (M2)

Para garantir a adequada execução da estrutura, é imprescindível que o fundo da vala seja devidamente compactado e nivelado.

29.3. 96620 LASTRO DE CONCRETO MAGRO, APLICADO EM PISOS, LAJES SOBRE SOLO OU RADIERS. AF_08/2017 (M3)

O lastro de concreto magro será constituído por uma composição de cimento Portland, areia, brita e água. Essa mistura proporciona um concreto com baixa resistência mecânica, ideal para nivelamento e regularização do terreno, sem comprometer a integridade da estrutura final. Sua aplicação ocorrerá sobre o terreno devidamente compactado e nivelado, atuando como uma base sólida e uniforme para a construção.

29.4. C1400 FORMA DE TÁBUAS DE 1" DE 3A. P/FUNDAÇÕES UTIL. 5 X (M2)

As tábuas serão con feccionadas em madeira de lei do tipo 3A., garantindo resistência e durabilidade adequadas para suportar as pressões exercidas pelo concreto. Cada tábua terá 1 polegada de espessura (aproximadamente 2,54 centímetros) para proporcionar a rigidez necessária. O comprimento e a largura das tábuas serão dimensionados conforme as dimensões da fundação a ser construída. Além disso, as tábuas serão devidamente lixadas e niveladas, garantindo uma superfície lisa e uniforme para o despejo do concreto, o que

contribui para a obtenção de uma superfície final de concreto sem imperfeiç indesejadas.

A forma de tábuas de 1" de 3A. será montada no local da obra, formando o molde no formato da fundação desejada. Antes de despejar o concreto, será verificado se as tábuas estão devidamente alinhadas e niveladas, garantindo assim a precisão das dimensões da fundação.

Após o despejo do concreto, as tábuas serão deixadas no lugar até que o concreto atinja a resistência necessária para suportar sua própria carga. Em seguida, as tábuas serão removidas cuidadosamente, deixando exposta a fundação de concreto. Este processo permite obter uma fundação sólida e bem acabada, pronto para suportar a estrutura a ser construída sobre ela.

29.5. C1401 FORMA DE TÁBUAS DE 1" DE 3A. P/SUPERESTRUTURA - UTIL. 2 X (M2)

As tábuas serão confeccionadas em madeira de lei do tipo 3A., garantindo resistência e durabilidade adequadas para suportar as pressões exercidas pelo concreto. Cada tábua terá 1 polegada de espessura (aproximadamente 2,54 centímetros) para proporcionar a rigidez necessária. O comprimento e a largura das tábuas serão dimensionados conforme as dimensões da estrutura a ser construída. Além disso, as tábuas serão devidamente lixadas e niveladas, garantindo uma superfície lisa e uniforme para o despejo do concreto, o que contribui para a obtenção de uma superfície final de concreto sem imperfeições indesejadas.

A forma de tábuas de 1" de 3A. será montada no local da obra, formando o molde no formato da estrutura desejada. Antes de despejar o concreto, será verificado se as tábuas estão devidamente alinhadas e niveladas, garantindo assim a precisão das dimensões.

Após o despejo do concreto, as tábuas serão deixadas no lugar até que o concreto atinja a resistência necessária para suportar sua própria carga. Em seguida, as tábuas serão removidas cuidadosamente, deixando exposta a estrutura de concreto.

29.6. 92762 ARMAÇÃO DE PILAR OU VIGA DE ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO UTILIZANDO AÇO CA-50 DE 10,0 MM - MONTAGEM AF_06/2022 (KG)

A utilização de barras de aço CA-50 de 10,0 mm na armação de pilares ou vigas em estruturas de concreto armado é essencial para conferir resistência e estabilidade à edificação. Para isso, as barras serão cortadas e dobradas conforme as dimensões e o projeto estrutural, utilizando equipamentos especializados que garantem precisão e qualidade na conformação das armaduras. Após o processo de corte e dobra, as barras serão montadas de acordo com o projeto, posicionando-as corretamente para garantir a distribuição adequada das cargas e a conformidade com as especificações técnicas estabelecidas. Durante essa etapa, é crucial garantir que a disposição das barras atenda às exigências de segurança e resistência da estrutura. Para assegurar a integridade da armadura e evitar deslocamentos durante a concretagem, as barras serão amarradas entre si utilizando arame recozido. Esse procedimento é fundamental para manter a estabilidade das armaduras durante todo o processo de execução da estrutura de concreto armado, contribuindo para a segurança e durabilidade da edificação.

29.7. 92759 ARMAÇÃO DE PILAR OU VIGA DE ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO UTILIZANDO AÇO CA-60 DE 5,0 MM - MONTAGEM. AF_06/2022 (KG)

A utilização de barras de aço CA-60 de 5,0 mm na armação de pilares ou vigas em estruturas de concreto armado é essencial para conferir resistência e estabilidade à edificação. Para isso, as barras serão cortadas e dobradas conforme as dimensões e o projeto estrutural, utilizando equipamentos especializados que garantem precisão e qualidade na conformação das armaduras. Após o processo de corte e dobra, as barras serão montadas de acordo com o projeto, posicionando-as corretamente para garantir a distribuição adequada das cargas e a conformidade com as especificações técnicas estabelecidas. Durante essa etapa, é crucial garantir que a disposição das barras atenda às exigências de segurança e resistência da estrutura. Para assegurar a integridade da armadura e evitar deslocamentos durante a concretagem, as

barras serão amarradas entre si utilizando arame recozido. Esse procedimento é fundamental para manter a estabilidade das armaduras durante todo o processo de execução da estrutura de concreto armado, contribuindo para a segurança e durabilidade da edificação.

29.8. 94965 CONCRETO FCK = 25MPA, TRAÇO 1:2,3:2,7 (EM MASSA SECA DE CIMENTO/ AREIA MÉDIA/ BRITA 1) - PREPARO MECÂNICO COM BETONEIRA 400 L. AF 05/2021 (M3)

O concreto a ser preparado tem como objetivo atingir uma resistência característica à compressão de 25 MPa (megapascal) após 28 dias de cura. O traço adotado é de 1 parte de cimento para 2,3 partes de areia média e 2,7 partes de brita 1, considerando as proporções em massa seca. O preparo do concreto será realizado mecanicamente utilizando uma betoneira com capacidade de 400 litros. O processo consiste em adicionar os materiais na seguinte ordem:

- 1. Adicionar parte da água necessária à betoneira.
- 2. Acrescentar o cimento, seguido pela areia média e pela brita 1, respeitando as proporções do traço estabelecido.
- 3. Adicionar o restante da água de forma controlada, garantindo a consistência adequada da mistura.
- 4. Manter a betoneira em funcionamento até obter uma mistura homogênea e uniforme, assegurando que todos os materiais estejam completamente integrados.

29.9. 103670 LANÇAMENTO COM USO DE BALDES, ADENSAMENTO E ACABAMENTO DE CONCRETO EM ESTRUTURAS. AF_02/2022 (M3)

O concreto deve ser lançado de um ponto o mais próximo possível da posição final, através de sucessivas camadas, com espessura não superior a 50 cm, e com cuidados especiais para garantir o preenchimento de todas as reentrâncias, cantos vivos, e prover adensamento antes do lançamento da camada seguinte. Em nenhuma situação o concreto deve ser lançado de alturas superiores a 2m. No caso de peças altas, e principalmente se forem estreitas, o lançamento deve se dar através de janelas laterais em número suficiente que

permita o controle visual da operação. Em caso de ter concretos com suspetino de terem iniciado pega antes do lançamento devem ser recusados, o adensamento deve ser executada por equipamentos vibratórios mecânicos, para assim possa atingir a máxima densidade possível e a eliminação de vazios.

29.10. COMP.13 PÉRGOLA EM MADEIRA 2,00M (UN)

A pérgola será construída em madeira de alta qualidade, assegurando durabilidade e resistência às intempéries. Cada pérgola terá uma extensão de 2,00 metros, oferecendo uma estrutura adequada para cobertura e sombreamento do espaço. O design da pérgola foi cuidadosamente elaborado para harmonizar com o ambiente, adicionando um aspecto estético agradável ao caramanchão.

29.11. 87879 CHAPISCO APLICADO EM ALVENARIAS E ESTRUTURAS DE CONCRETO INTERNAS, COM COLHER DE PEDREIRO. ARGAMASSA TRAÇO 1:3 COM PREPARO EM BETONEIRA 400L. AF_10/2022 (M2)

Para garantir uma aderência eficaz do reboco, é necessário realizar o chapisco na estrutura de concreto. A argamassa para essa etapa será preparada no traço 1:3, utilizando uma parte de cimento para três partes de areia média. O preparo da argamassa será realizado em uma betoneira de 400L, assegurando a homogeneidade e a consistência adequada da mistura. Antes da aplicação do chapisco, a superfície da estrutura de concreto passará por uma limpeza cuidadosa e umedecimento, favorecendo a aderência da argamassa. A aplicação do chapisco será realizada com o uso de uma colher de pedreiro, garantindo uma distribuição uniforme da argamassa sobre a superfície, com controle preciso da espessura. Esse processo visa criar uma base texturizada que facilite a aderência do reboco, proporcionando uma ancoragem sólida para os revestimentos subsequentes.

29.12. 87527 EMBOÇO, PARA RECEBIMENTO DE CERÂMICA, EM ARGAMASSA TRAÇO 1:2:8, PREPARO MECÂNICO COM BETONEIRA 400L, APLICADO MANUALMENTE EM FACES INTERNAS DE PAREDES, PARA AMBIENTE COM ÁREA MENOR QUE 5M2, ESPESSURA DE 20MM, COM EXECUÇÃO DE TALISCAS. AF_06/2014 (M2)

O emboço será preparado conforme as especificações técnicas estabelecidas, proporcio nando uma base sólida e nivelada para a aplicação do revestimento cerâmico. Para isso, a argamassa será composta no traço 1:2:8, utilizando uma parte de cimento, duas partes de cal hidratada e oito partes de areia média, garantindo resistência e aderência suficientes à superfície. Esse preparo será realizado niecanicamente, utilizando uma betoneira de 400L, para assegurar a homogene dade e consistência adequada da mistura, evitando variações na qualidade do emboço. Antes da aplicação, a superfície será limpa e umedecida para melhor aderência da argamassa, e então o emboço será aplicado manualmente sobre a superfície preparada, utilizando ferramentas adequadas, como desempenadeiras e colheres de pedreiro, permitindo um controle preciso da espessura e uniformidade do emboço.

29.13. C1867 PEDRAS NATURAIS DECORATIVAS, C/ARGAMASSA MISTA CIMENTO. CAL HIDRATADA E AREIA (M2)

Os pilares do caramanchão devem ser revestidos com filetes de Pedra Cariri, conforme especificado no projeto arquitetônico.

30. INSTALAÇÕES ELÉTRICAS

30.1. 91932 CABO DE COBRE FLEXÍVEL ISOLADO, 10 MM², ANTI-CHAMA 450/750 V, PARA CIRCUITOS TERMINAIS - FORNECIMENTO E INSTALAÇÃO. AF_03/2023 (M)

O cabo é constituído por condutores de cobre eletrolítico flexível, proporcionando excelente condutividade elétrica e flexibilidade que facilita a instalação. Seu isolamento é feito com material dielétrico resistente ao calor e às chamas, garantindo proteção contra curtos-circuitos e incêndios. Com uma seção transversal de 10 mm², o cabo é adequado para suportar a corrente elétrica necessária em circuitos terminais. Amplamente utilizado em instalações elétricas residenciais, comerciais e industriais, ele alimenta circuitos terminais, como tomadas, interruptores, luminárias e diversos equipamentos elétricos. Sua classificação anti-chama o torna ideal para ambientes onde a segurança contra incêndios é uma preocupação. A instalação do cabo deve ser conduzida por profissionais qualificados, seguindo as recomendações do fabricante e as

normas técnicas vigentes, evitando danos ao isolamento para garantir su eficácia e segurança. A manutenção periódica das instalações elétricas é essencial para assegurar o funcionamento adequado do sistema e prolongar a vida útil do cabo.

30.2. 91930 CABO DE COBRE FLEXÍVEL ISOLADO, 6 MM², ANTI-CHAMA 450/750 V, PARA CIRCUITOS TERMINAIS - FORNECIMENTO E INSTALAÇÃO. AF_03/2023 (M)

O cabo é constituído por condutores de cobre eletrolítico flexível, proporcionando exceler te condutividade elétrica e flexibilidade que facilita a instalação. Seu isolamento é feito com material dielétrico resistente ao calor e às chamas, garantindo proteção contra curtos-circuitos e incêndios. Com uma seção transversal de 6 nm², o cabo é adequado para suportar a corrente elétrica necessária em circuitos terminais. Amplamente utilizado em instalações elétricas residenciais, comerciais e industriais, ele alimenta circuitos terminais, como tomadas, interruptores, luminárias e diversos equipamentos elétricos. Sua classificação anti-chama o torna ideal para ambientes onde a segurança contra incêndios é uma preocupação. A instalação do cabo deve ser conduzida por profissionais qualificados, seguindo as recomendações do fabricante e as normas técnicas vigentes, evitando danos ao isolamento para garantir sua eficácia e segurança. A manutenção periódica das instalações elétricas é essencial para assegurar o funcionamento adequado do sistema e prolongar a vida útil do cabo.

30.3. C4558 CABO CORDPLAST (CABO PP) 3 x 2,50 mm² (M)

O cabo Cordplast 3 x 2,50 mm² é um componente essencial em instalações elétricas residenciais, comerciais e industriais, sendo empregado principalmente para alimentar equipamentos e dispositivos de baixa potência, como lâmpadas, aparelhos eletrônicos e eletrodomésticos. Sua ampla utilização se deve não apenas à sua capacidade de fornecer energia de forma eficiente, mas também à sua notável flexibilidade, que facilita a instalação em locais de difícil acesso. Além disso, o cabo Cordplast oferece excelente resistência à umidade e à corrosão devido ao uso do polipropileno em sua fabricação, proporcionando uma eficaz isolação elétrica. Destaca-se também sua

durabilidade e resistência mecânica, resultado do uso de materiais de a qualidade em seu processo de fabricação, o que confere ao cabo uma longa vida útil e capacidade de suportar condições adversas com confiança.

30.4. 101658 LUMINÁRIA DE LED PARA ILUMINAÇÃO PÚBLICA, DE 138 W ATÉ 180 W - FORNECIMENTO E INSTALAÇÃO. AF_08/2020 (UN)

As luminárias de LED com potência entre 138 W e 180 W são adequadas para iluminar ruas, aven das, praças, parques e outras áreas públicas durante a noite, proporcionando uma iluminação eficaz e segura. Seu design robusto e resistente às intempéries as torna ideais para uso em ambientes externos, garantindo durabilidade e eficiência. Além disso, o uso de LED resulta em economia de energia e étrica em comparação com tecnologias de iluminação convencionais, o que contribui para a redução dos custos operacionais e para a preservação do meio ambiente ao diminuir a emissão de carbono.

30.5. C4808 BALIZADOR DE SOBREPOR/EMBUTIR, CORPO EM ALUMÍNIO E GRADE DE PROTEÇÃO, PARA UMA LÂMPADA 9LED, SOQUETE E27, POTÊNCIA 1W FATOR DE POTÊNCIA MÍNIMO 0,93 (UN)

O balizador de sobrepor/embutir é uma solução versátil e eficiente para iluminar uma variedade de áreas, tanto internas quanto externas, como jardins, fachadas, corredores e escadas. Sua instalação proporciona uma iluminação discreta e funcional, realçando os elementos arquitetônicos e promovendo a segurança dos usuários. Com uma potência de apenas 1W e um fator de potência mínimo de 0,93, o balizador oferece uma iluminação eficiente com baixo consumo de energia. Além disso, seu corpo em alumínio e a grade de proteção garantem resistência e durabilidade mesmo em ambientes sujeitos às intempéries, e sua capacidade de ser instalado tanto sobreposto quanto embutido o torna uma escolha adaptável às necessidades específicas de capa projeto.

30.6. 101632 RELÉ FOTOELÉTRICO PARA COMANDO DE ILUMINAÇÃO EXTERNA 1000 W - FORNECIMENTO E INSTALAÇÃO. AF_08/2020 (UN)

O relé fotoelétrico é um dispositivo eletrônico projetado para controlar o acionamento automático de iluminação com base na luminosidade ambiente.

W

Essa tecnologia permite a economia de energia ao garantir que as luzes sejan ligadas apenas quando necessário, aumentando a eficiência energética contribuindo para a sustentabilidade.

30.7. 101636 BRAÇO PARA ILUMINAÇÃO PÚBLICA, EM TUBO DE AÇO GALVANIZADO, COMPRIMENTO DE 1,50 M, PARA FIXAÇÃO EM POSTE DE CONCRETO - FORNECIMENTO E INSTALAÇÃO. AF_08/2020 (UN)

O braço para iluminação pública em tubo de aço galvanizado, com comprimento de 1,50 metros, é uma solução eficiente e durável para a instalação de luminárias em postes de concreto. Sua execução cuidadosa e a utilização de materiais de qualidade garantem um sistema de iluminação pública confiável, contribuindo para a segurança e bem-estar da comunidade. Antes da instalação, o local onde o braço será fixado no poste de concreto é preparado, garantindo que esteja limpo e livre de quaisquer obstruções. Em seguida, o braço de iluminação é posicionado e fixado de forma segura no poste de concreto utilizando os dispositivos de fixação adequados, geralmente, parafusos e porcas galvanizadas para garantir a resistência e durabilidade da instalação. Após a fixação do braço, é rea izada a conexão elétrica com a rede de alimentação, garantindo o funcionamento adequado da luminária. Por fim, são realizados testes para verificar o correto funcionamento da iluminação, bem como eventuais ajustes necessários para garantir a eficiência e segurança do sistema.

30.8. 00012366 POSTE DE CONCRETO ARMADO DE SECAO CIRCULAR, EXTENSAO DE 10,00 M, RESISTENCIA DE 150 A 200 DAN, TIPO C-14 (UN)

O poste de concreto armado de seção circular, com extensão de 10,00 metros, é uma escolha confiável e eficiente para diversas aplicações em infraestrutura urbana. Sua instalação simplificada, aliada às suas características técnicas, torna-o uma opção viável e segura para projetos de iluminação pública, sinalização e outras finalidades.

Antes da instalação do poste, é fundamental realizar a preparação do local, garantindo sua limpeza, nivelamento e compactação adequados. Uma vez preparado, o poste é posicionado verticalmente e fixado no solo por meio de métodos de ancoragem apropriados, como bases pré-fabricadas ou fundações

M

específicas. Após a instalação física, são realizadas as conexões elétricas necessárias para alimentar luminárias ou equipamentos instalados em seu topo, completando assim o processo de instalação e garantindo seu pleno funcionamento.

30.9. 97888 CAIXA ENTERRADA ELÉTRICA RETANGULAR, EM ALVENARIA COM TIJOLOS CERÂMICOS MACIÇOS, FUNDO COM BRITA, DIMENSÕES INTERNAS: 0,6X0,6X0,6 M. AF_12/2020 (UN)

A caixa enterrada elétrica retangular, construída em alvenaria com tijolos cerâmicos maciços, destina-se a abrigar dispositivos elétricos e conexões subterrâneas. Com dimensões internas de 0,6x0,6x0,6 metros, oferece espaço adequado para a instalação dos componentes necessários.

Para sua execução, inicialmente será feita a escavação do local de acordo com as dimensões especificadas. Em seguida, os tijolos cerâmicos maciços serão assentados com argamassa adequada, formando as paredes da caixa. O fundo da caixa será preenchido com uma camada de brita, proporcionando drenagem e estabilidade. Após a conclusão da alvenaria, será feita a instalação dos dispositivos elétricos conforme o projeto, seguido pelo fechamento da caixa. Finalmente, será realizado o acabamento externo para proteção e integração com o ambiente circundante, assegurando a funcionalidade e durabilidade da caixa enterrada elétrica retangular.

30.10. 93008 ELETRODUTO RÍGIDO ROSCÁVEL, PVC, DN 50 MM (1 1/2"), PARA REDE ENTERRADA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA - FORNECIMENTO E INSTALAÇÃO. AF_12/2021 (M)

O eletroduto será fabricado em PVC (Policloreto de Vinila), um material resistente à corrosão, umidade e variações climáticas, garantindo durabilidade e proteção adequada aos cabos elétricos. Possuirá um diâmetro nominal de 50 mm (1 1/2 polegadas), oferecendo espaço suficiente para o acomodamento dos cabos. Além disso, será roscável, o que facilita a conexão e montagem com outros componentes do sistema elétrico. Indicado para aplicações em redes enterradas de distribuição de energia elétrica em diversos ambientes, como áreas urbanas, industriais, comerciais e residenciais. A instalação do eletroduto

rígido roscável deve seguir as normas técnicas e regulamentações aplicáveis processo inclui a escavação das valas, o assentamento do eletroduto, a conexão com os demais componentes do sistema elétrico e o reaterro adequado das valas para garantir a integridade da instalação.

30.11. C2066 QUADRO DE DISTRIBUIÇÃO DE LUZ SOBREPOR ATE 6 DIVISÕES, C/BARRAMENTO (UN)

O quadro de distribuição de luz sobrepor até 6 divisões, com barramento, é um componente cruci al em instalações elétricas residenciais, comerciais e industriais, destinado a distribuir e proteger os circuitos elétricos. Sua construção será realizada conforme as normas técnicas vigentes, utilizando materiais de qualidade e respeitando as especificações do projeto elétrico. Inicialmente, serão fixadas as laterais e o fundo do quadro em uma parede ou superfície adequada, garantindo sua estabilidade. Em seguida, serão instalados os disjuntores, barramentos e demais componentes de acordo com o layout previamente estabelecido, visando uma distribuição eficiente e segura da energia elétrica. Os circuitos serão identificados conforme sua finalidade e devidamente conectados ao quadro. Após a montagem, serão realizados testes de funcionamento e inspeções para garantir que tudo esteja em conformidade com as normas de segurança e padrões de qualidade estabelecidos. Ao final da execução, o quadro estará pronto para fornecer energia elétrica de forma confiável e segura para os dispositivos e equipamentos conectados à rede elétrica.

30.12. 101946 QUADRO DE MEDIÇÃO GERAL DE ENERGIA PARA 1 MEDIDOR DE SOBREPOR - FORNECIMENTO E INSTALAÇÃO. AF_10/2020 (UN)

O quadro de med ção geral de energia para 1 medidor de sobrepor é um elemento fundamental em instalações elétricas, responsável por medir e controlar o consumo de energia elétrica em um determinado local. Sua construção será realizada em conformidade com as normas técnicas e regulamentações pertinentes, utilizando materiais e componentes de qualidade. Primeiramente, será selecionado o local apropriado para a instalação do quadro, levando em consideração as especificações do projeto elétrico e as normas de segurança. Em seguida, será feita a fixação do quadro na parede ou em suportes

adequados, garantindo sua estabilidade e fácil acesso para manutenção. Se a realizadas as conexões elétricas necessárias para o funcionamento do medidos de energia, seguindo as instruções do fabricante e as diretrizes do projeto. Após a instalação, serão realizados testes de funcionamento e verificação da precisão da medição, garantindo o correto funcionamento do sistema. Por fim, o quadro estará pronto para forne cer dados precisos sobre o consumo de energia elétrica no local, contribuindo para o controle e a gestão eficiente dos recursos energéticos.

30.13. 93654 DISJUNTOR MONOPOLAR TIPO DIN, CORRENTE NOMINAL DE 16A - FORNECIMENTO E INSTALAÇÃO. AF_10/2020 (UN)

O disjuntor mor opolar tipo DIN, com corrente nominal de 16A, é amplamente utilizado em sistemas residenciais, comerciais e industriais como um dispositivo crucial de proteção elétrica. Projetado para ser facilmente instalado em trilhos padrão DIN, este disjuntor oferece uma proteção confiável contra sobrecargas e curtos-circuitos em circuitos elétricos monofásicos. Sua corrente nominal de 16A indica sua capacidade de interromper de forma segura correntes de até 16 amperes, garantindo assim uma proteção eficaz aos equipamentos e fiações contra danos causados por correntes elétricas excessivas. A instalação deste disjuntor monopolar tipo DIN de 16A deve ser conduzida exclusivamente por profissionais qualificados, que devem seguir rigorosamente as recomendações do fabricante e as normas técnicas aplicáveis, assegurando assim uma instalação segura e eficiente.

30.14. 93653 DISJUNTOR MONOPOLAR TIPO DIN, CORRENTE NOMINAL DE 10A - FORNECIMENTO E INSTALAÇÃO. AF 10/2020 (UN)

O disjuntor mor opolar tipo DIN, com corrente nominal de 10A, é amplamente utilizado em sistemas residenciais, comerciais e industriais como um dispositivo crucial de proteção elétrica. Projetado para ser facilmente instalado em trilhos pacrão DIN, este disjuntor oferece uma proteção confiavel contra sobrecargas e curtos-circuitos em circuitos elétricos monofásicos. Sua corrente nominal de 10A indica sua capacidade de interromper de forma segura correntes de até 10 amperes, garantindo assim uma proteção eficaz aos equipamentos e fiações contra danos causados por correntes elétricas

excessivas. A instalação deste disjuntor monopolar tipo DIN de 10A deve ser conduzida exclusivamente por profissionais qualificados, que devem segurir rigorosamente as recomendações do fabricante e as normas técnicas aplicáveis, assegurando assim uma instalação segura e eficiente.

30.15. C4562 DISPOSITIVO DE PROTEÇÃO CONTRA SURTOS DE TENSÃO - DPS's - 40 KA/440V (UN)

O Dispositivo de Proteção contra Surtos de Tensão (DPS) é um componente projetado para proteger as instalações elétricas contra surtos de tensão, provenientes de descargas atmosféricas ou outras fontes de interferência elétrica. O modelo especificado possui capacidade de dissipação de surtos de até 40 kA, parantindo uma proteção eficaz contra picos de tensão. Sua tensão nominal de operação é de 440V, adequada para aplicação em sistemas elétricos industriais e comerciais. O DPS opera de forma automática, detectando a presença de surtos de tensão e direcionando-os de forma segura para o sistema de aterramento, impedindo danos aos equipamentos elétricos conectados.

30.16. 96986 HASTE DE ATERRAMENTO, DIÂMETRO 3/4", COM 3 METROS - FORNECIMENTO E INSTALAÇÃO. AF 08/2023 (UN)

A haste de aterramento, com um diâmetro de 3/4 de polegada (aproximadamente 19 milímetros) e um comprimento total de 3 metros, é construída principalmente com materiais condutores, como cobre ou aço galvanizado, assegurando excelente condutividade elétrica e durabilidade contra corrosão. Utilizada em sistemas elétricos, a haste de aterramento desempenha o papel crucial de esta pelecer uma conexão eficaz com o solo, permitindo a dissipação segura de correntes elétricas resultantes de surtos ou descargas atmosféricas. Tipicamente, é instalada verticalmente no solo em áreas estratégicas próximas a edificações, equipamentos elétricos sensíveis ou em locais que demandam um sistema de aterramento confiável. O procedimento de instalação da haste de aterramento inicia com a escavação de um buraco no solo, com a profundidace adequada para acomodar a haste de 3 metros. Após inserção no solo, é crucial garantir que esteja firmemente fixada e que haja um bom contato entre a haste e o solo para assegurar uma eficiente condutividade

elétrica. Em seguida, a haste é conectada ao sistema de aterramento existente por meio de cabos condutores apropriados. Essas etapas garantem integridade e eficácia do sistema de aterramento elétrico.

31. INSTALAÇÕES HIDRÁULICAS

31.1. 99255 CAIXA ENTERRADA HIDRÁULICA RETANGULAR EM ALVENARIA COM TIJOLOS CERÂMICOS MACIÇOS, DIMENSÕES INTERNAS: 0,8X0,8X0,6 M PARA REDE DE DRENAGEM. AF_12/2020 (UN)

A caixa enterrada hidráulica retangular em alvenaria com tijolos cerâmicos maciços, com dimensões internas de 0,8x0,8x0,6 metros, destina-se à rede de drenagem e é um componente essencial em sistemas de infraestrutura urbana. Sua execução inicia-se com a seleção de um local apropriado, levando em consideração o projeto hidráulico e as normas técnicas vigentes. Após a demarcação do local, e realizada a escavação, garantindo as dimensões especificadas para a caixa. Em seguida, os tijolos cerâmicos maciços são assentados com argamassa, formando as paredes da caixa. O fundo da caixa é preenchido com brita, proporcionando drenagem adequada. Após a montagem da estrutura, são instalados os componentes necessários, como tubos e conexões, de acordo com o projeto hidráulico. Finalmente, a caixa é coberta com uma tampa apropriada, garantindo o acesso para manutenção e inspeção. O resultado final é uma desempenhar seu papel na rede de drenagem urbana.

31.2. C2616 TUBO PVC SOLD. MARROM D= 25mm (3/4") (M)

O tubo de PVC soldável marrom com diâmetro de 25mm (3/4") e um componente amplamente utilizado em sistemas hidráulicos residenciais e comerciais para condução de água potável. Sua fabricação em PVC (Policloreto de Vinila) confere ao tubo características de resistência química, durabilidade e facilidade de instalação. O processo de soldagem é realizado através do uso de adesivo solvente específico para PVC, garantindo uma união segura e hermética entre os tubos e conexões. Antes da aplicação do adesivo, é fundamental que as superfícies dos tubos estejam limpas e secas para garantir uma aderência adequada. Após a soldagem, o sistema hidráulico estará pronto para conduzir a

água de forma eficiente e segura, atendendo às necessidades de abastecime do local de instalação.

31.3. C1559 JOELHO PVC SOLD. AZUL D=25mmX3/4" (UN)

O joelho de PVC soldável azul com diâmetro de 25mm x 3/4" é um componente essencial em sistemas hidráulicos residenciais e comerciais para promover curvas na direção da tubulação. Fabricado em PVC (Policloreto de Vinila), possui excelente resistência química e durabilidade, sendo ideal para condução de água potável. O processo de soldagem é realizado utilizando um adesivo solvente específico para PVC, que garante uma união firme e hermética entre o joelho e os tubos conectados. Antes da aplicação do adesivo, é importante que as superfícies dos tubos estejam limpas e secas para assegurar uma aderência adequada. Após a soldagem, o joelho estará firmemente integrado ao sistema, permitindo uma distribuição eficiente e segura da água ao longo da rede hidráulica

31.4. 86916 TORNEIRA PLÁSTICA 3/4 PARA TANQUE - FORNECIMENTO E INSTALAÇÃO. AF_01/2020 (UN)

A torneira plástica 3/4" para tanque é um dispositivo amplamente utilizado em sistemas de abaste cimento de água domésticos. Fabricada em material plástico de alta qualidade, apresenta resistência à corrosão e durabilidade, mesmo em ambientes úmidos. Seu design simples e funcional permite o controle do fluxo de água de form a prática e eficiente. A instalação da torneira é realizada através da fixação em uma saída de água compatível, geralmente no tanque ou em outros reservatórios de água. Antes da instalação, é importante garantir que a conexão esteja limpa e livre de impurezas para evitar vazamentos. Após a fixação, a torneira estará pronta para uso, proporcionando uma fonte de água acessível e conveniente para diversas atividades, como lavagem de roupas e limpeza de utensílios.

32. PAISAGISMO

32.1. 98516 PLANTIO DE PALMEIRA COM ALTURA DE MÚDA MENOR OU IGUAL A 2,00 M. AF_05/2018 (UN)

O plantio de palmeira com altura de muda menor ou igual a 2,00 metros e um procedimento realizado para introduzir palmeiras em áreas paisagísticas, jardins, parques ou projetos de arborização urbana. Essas mudas de palmeira, com altura limitada a 2 metros, são escolhidas com base em critérios de saúde, beleza e adequação ao ambiente em que serão plantadas. Antes do plantio, é fundamental preparar adequadamente o solo para garantir condições favoráveis ao desenvolvimento saudável das palmeiras. Isso pode incluir a remoção de detritos, nivelamento do terreno, adição de matéria orgânica e correção de pH, conforme necessário. Durante o plantio, as mudas de palmeira são cuidadosamente posicionadas nos locais determinados, respeitando o espaçamento adequado entre as plantas e considerando as características de crescimento de cada espécie. É importante garantir que as raízes das mudas estejam corretamente distribuídas e que o colo da planta fique nivelado com o solo circundante. Após 🌢 plantio, as palmeiras são devidamente irrigadas para promover o estabelecimento das raízes e minimizar o estresse hídrico. Em alguns casos, pode se necessário o uso de tutores para fornecer suporte adicional às mudas até que estejam firmemente enraizadas no solo. Além disso, é importante realizar a manutenção adequada das palmeiras após o plantio, incluindo irrigação regular, controle de pragas e doenças, adubação e poda conforme necessário. Essas práticas visam garantir o crescimento saudável e o desenvolvimento vigoros o das palmeiras ao longo do tempo.

33. SERVIÇOS FINAIS ∤ DIVERSOS

33.1. COMP.05 BANCO COM REVESTIMENTO EM FILETE DE PEDRA CARIRI E ASSENTO EM GRANITO CINZA (M)

O banco em alvenaria, com revestimento em filete de Pedra Cariri e assento em granito cinza, é uma escolha versátil e robusta para inúmeras aplicações urbanas, proporcionando assentos confortáveis e duráveis em locais públicos como praças, parques, calçadas e jardins. Sua resistência à intempérie e apelo estético o tornam uma opção ideal para ambientes ao ar livre sujeitos às variações climáticas. Desse modo, é fundamental que sua construção seja rigorosamente executada conforme o projeto estabelecido, garantindo assim a qualidade e durabilidade esperadas.

O guarda-corpo em madeira é um elemento amplamente utilizado em diversos tipos de ambientes, como residências, edifícios comerciais, espaços públicos e áreas de lazer. Sua função principal é proporcionar segurança, sem comprometer a estética do ambiente. É versátil e pode ser aplicado em diferentes áreas, como escadas, varandas, sacadas, terraços, mezaninos, entre outros locais onde há risco de queda. Portanto, é fundamental que sua instalação seja realizada conforme especificado no projeto, garantindo assim não apenas a segurança dos usuários mas também a harmonia estética do espaço.

33.3. C0110 AQUISIÇÃO, ASSENT. E REJUNT. DE TUBO DE CONCRETO SIMPLES D=40cm (M)

Serão colocados tubos de concreto simples de diâmetro 400 mm, para redes coletoras de águas pluviais, que servirão como lixeira. As lixeiras devem estra posicionadas conforme projeto.

33.4. C4772 TAMPA EN CONCRETO ARMADO, ESPESSURA 0,05M (M2)

As tampas de concreto serviram de base para os tubos de concreto armado (lixeiras), que devem possuir um diâmetro de 400 mm.

33.5. 99811 LIMPEZA DE CONTRAPISO COM VASSOURA A SECO. AF_04/2019 (M2)

A limpeza de contrapiso com vassoura a seco é um procedimento eficiente empregado para eliminar poeira, detritos e sujeira superficial de uma variedade de materiais, como concreto, cerâmica e porcelanato. Essa técnica envolve o uso de vassouras com cerdas macias, dispensando a necessidade de água ou produtos químicos. Essa abordagem não apenas preserva a integridade dos materiais, mas também minimiza o tempo de secagem e evita qualquer dano causado pela umidade. Ademais, a limpeza de contrapiso com vassoura a seco desempenha um papel crucial na conclusão de obras, garantindo que o ambiente esteja limpo e pronto para ser entregue ao cliente.

- PRAÇA AÇUDE ORIENTE II

34. SERVIÇOS PRELIMINARES

34.1. C2873 LOCAÇÃO DA OBRA COM AUXÍLIO TOPOGRÁFICO (ÁREA ATÉ 5000 M2) (M2)

A locação da obra deverá ser realizada com auxílio de um topografo de modo a garantir a precisão das dimensões previstas em projeto. Dessa maneira, falhas executivas, como diminuição de seções e erros de nivelamento, podem ser evitadas. O serviço deverá ser executado seguindo as normativas vigentes a fim de garantir a segurança, durabilidade e qualidade do serviço.

34.2. 104796 DEMOLIÇÃO DE GUIAS, SARJETAS OU SARJETÕES, DE FORMA MECANIZADA SEM REAPROVEITAMENTO. AF_09/2023 (M)

A demolição das guias, sarjetas ou sarjetões será realizada de forma mecanizada, utilizando equipamentos específicos para esse fim. O processo de força controlada para a quebra e remoção das estruturas de concreto, processo de demolição será realizado de forma controlada, com a aplicação de golpes ou pressão nos pontos estratégicos das guias, sarjetas ou sarjetões. O objetivo é fragmentar as estruturas de concreto em partes menores para facilitar a remoção e o descarte adequado dos resíduos.

34.3. C3041 RETIRADA DE PAVIMENTAÇÃO EM BLOKRET C/ REMOÇÃO LATERAL (M2)

O processo de retirada de pavimentação em bloquetes com remoção lateral refere-se à remoção cuidadosa e sistemática de blocos de pavimentação, com a desmontagem lateral das camadas adjacentes. Inicialmente, será realizada uma análise detalhada da área a ser desmontada, verificando possíveis interferências subterrâneas e características do terreno. Em seguida, será iniciado o processo de remoção dos bloquetes de maneira ordenada, utilizando ferramentas adequadas para minimizar danos aos materiais. A remoção lateral será executada de forma progressiva, camada por camada, permitindo o acesso seguro e eficiente às peças de pavimentação. Durante todo o processo, serão adota das medidas para garantir a preservação dos materiais retirados, visando sua reutilização ou descarte responsável, de acordo com as

diretrizes ambientais e regulatórias vigentes. Ao final da operação, a área ser deixada limpa e preparada para as etapas subsequentes do projeto.

34.4. C2940 RETIRADA DE PAVIMENTAÇÃO EM PARALELEPÍPEDO OU PEDRA TOSCA (M2)

A retirada de pav mentação em paralelepípedo ou pedra tosca consiste na remoção cuidadosa e sistemática desses materiais do leito onde foram assentados. Inicialmente, será realizada uma inspeção detalhada da área para identificar possíveis interferências subterrâneas e características do terreno que possam impactar no processo de remoção. Em seguida, será iniciada a retirada dos paralelepípedos ou pedras toscas, utilizando ferramentas apropriadas para evitar danos às peças e ao substrato. O processo será realizado de forma ordenada e progressiva, camada por camada, permitindo o acesso eficiente às peças de pavimentação. Durante a operação, serão adotadas medidas para preservar os materiais retirados, visando sua reutilização em outros projetos ou seu descarte responsável de acordo com as normas ambientais vigentes. Ao término da remoção, a área será deixada limpa e nivelada, preparada para receber uma nova pavim entação ou o uso conforme o projeto estabelecido.

34.5. 100982 CARGA, MANOBRA E DESCARGA DE ENTULHO EM CAMINHÃO BASCULANTE 10 M³ - CARGA COM ESCAVADEIRA HIDRÁULICA (CAÇAMBA DE 0,80 M³ / 111 HP) E DESCARGA LIVRE (UNIDADE: M3). AF_07/2020 (M3)

Este serviço remunera a carga, manobra e descarga do entulho produzido pela obra referente as demolições.

34.6. 93589 TRANSPORTE COM CAMINHÃO BASCULANTE DE 10 M³, EM VIA URBANA EM REVESTIMENTO PRIMÁRIO (UNIDADE: M3XKM). AF_07/2020 (M3XKM)

Este item refere-se ao transporte do entulho proveniente das demolições.

35. PAVIMENTAÇÃO

35.1. 100324 LASTRO COM MATERIAL GRANULAR (PEDRA BRITADA N.1 E PEDRA BRITADA N.2), APLICADO EM PISOS OU LAJES SOBRE SOLO, ESPESSURA DE *10 CM*. AF_07/2019 (M3)

O lastro de brita será aplicado sobre o terreno preparado para receber o piso poroso drenante, conforme indicado no projeto. Ele servirá como uma camada de suporte para o assentamento do piso, garantindo sua estabilidade e permitindo o adequado escoamento das águas pluviais.

35.2. 100323 LASTRO COM MATERIAL GRANULAR (AREIA MÉDIA), APLICADO EM PISOS DU LAJES SOBRE SOLO, ESPESSURA DE *10 CM*. AF_07/2019 (M3)

O lastro de areia será aplicado sobre o terreno preparado para receber o piso poroso drenante, conforme indicado no projeto. Ele servirá como uma camada de suporte para o assentamento do piso, garantindo sua estabilidade e permitindo o adequado escoamento das águas pluviais.

35.3. COMP.02 PLACA/PISO DE CONCRETO POROSO/ PAVIMENTO PERMEAVEL/BLOCO DRENANTE DE CONCRETO, 40 CM X 40 CM, E = 6 CM, COLORIDO (M2)

O pavimento será composto por blocos de concreto poroso, fabricados conforme as especificações técnicas estabelecidas. Esses blocos possuem uma estrutura que permite a passagem da água através de seus poros, promovendo a drenagem e a infiltração no solo. Ele será aplicado sobre uma base de lastro de brita e areia, garantir do a estabilidade e o correto funcionamento do sistema de drenagem. A instalação do pavimento permeável seguirá as etapas tradicionais de assentamento de blocos de concreto. Primeiramente, será preparada a base de lastro de brita e areia, que será compactada e nivelada. Em seguida, os blocos de concreto poroso serão assentados sobre a base, de forma alinhada e nivelada, garantindo a uniformidade e estabilidade do pavimento.

35.4. 96620 LASTRO DE CONCRETO MAGRO, APLICADO EM PISOS, LAJES SOBRE SOLO OU RADIERS. AF_08/2017 (M3)

O lastro de concreto magro será constituído por uma composição de cimento Portland, areia, prita e água. Essa mistura proporciona um concreto com baixa resistência mecânica, ideal para nivelamento e regularização do terreno, sem comprometer a integridade da estrutura final. Sua aplicação ocorrerá sobre o terreno devidamente compactado e nivelado, atuando como uma base sólida e uniforme para a construção.

35.5. 98679 PISO CIMENTADO, TRAÇO 1:3 (CIMENTO E AREIA), ACABAMENTO LISO, ESPESSURA 2,0 CM, PREPARO MECÂNICO DA ARGAMASSA. AF_09/2020 (M2)

A preparação da argamassa será realizada de forma mecânica, garantindo a homogenei dade e qualidade do material. O cimento e a areia serão misturados em um misturador mecânico, seguindo a proporção de 1 parte de cimento para 3 partes de areia. A mistura será executada até obter uma consistência adequada e homogênea. Com a argamassa devidamente preparada, será aplicada sobre a superfície previamente preparada e nivelada. A espessura da argamassa será de 2,0 cm, assegurando uma base sólida e uniforme para o piso. Utilizando-se ferramentas apropriadas, a argamassa será distribuída de maneira uniforme por toda a área a ser revestida. Após a aplicação da argamassa, será realizado o acabamento liso do piso. Utilizando desempenadeiras adequadas, a superfície do piso será alisada e nivelada, garantindo um acabamento liso e uniforme em toda a área. Cuidados especiais serão tomados para evitar a formação de ondulações ou irregularidades na superfície do piso.

35.6. 101092 PISO EM GRANITO APLICADO EM CALÇADAS OU PISOS EXTERNOS. AF_05/2020 (M2)

Para a execução desse piso, é crucial iniciar garantindo que a base esteja limpa e nivelada, removendo qualquer sujeira, detritos ou materiais soltos que possam comprometer a estabilidade do piso. Em seguida, proceda com o cuidadoso posicionamento das placas de granito sobre a base preparada, utilizando argamassa para fixá-las firmemente, assegurando que estejam niveladas e alinhadas corretamente. É fundamental preencher as juntas entre as placas com uma junta de argamassa apropriada, pois isso contribui para a

estabilização do piso e previne a entrada de água e sujeira entre as placas. A cos o assentamento das placas e o preenchimento das juntas, aplique um selante específico para granito para proteger o piso contra manchas, umidade e danos, realçando sua beleza natural. Por fim, verifique cuidadosamente se o piso está uniforme e nivelado, realizando ajustes conforme necessário para alcançar um acabamento perfeito.

35.7. 101731 PISO EM PEDRA ASSENTADO SOBRE ARGAMASSA 1:3 (CIMENTO E AREIA). AF_09/2020 (M2)

Antes do assenta mento do piso em pedra Cariri, o lastro de concreto será devidamente preparado Será realizada a limpeza da superfície para remoção de sujeira, poeira e resíduos. Em seguida, o lastro de concreto será nivelado e regularizado, assegurando uma base uniforme e estável para o assentamento das pedras. A argamassa será preparada na proporção de 1 parte de cimento para 3 partes de areia, conforme especificado. Os materiais serão misturados em um misturador me cânico ou manualmente até obter uma consistência homogênea e adequada para aplicação. Com a argamassa devidamente preparada, as pedras Cariri serão assentadas sobre o lastro de concreto, seguindo o padrão de assentamento definido no projeto. Cada pedra será posicionada cuidadosamente, pressionando-se levemente para garantir uma aderência firme à argam assa.

35.8. C1123 REJUNTAMENTO C/ ARG. PRÉ-FABRICADA, JUNTA ATÉ 2mm EM CERÂMICA, ACINIA DE 30x30 cm (900 cm²) E PORCELANATOS (PAREDE/PISO) (M2)

Antes de iniciar o processo de rejuntamento, é imprescindível proceder à limpeza da superfície do revestimento cerâmico, removendo qualquer vestigio de poeira, resíduos ou outros materiais que possam comprometer a aderência do rejunte. Além disso, as juntas entre as cerâmicas serão inspecionadas, assegurando que estejam completamente limpas e livres de quaisquer detritos que possam prejudicar o resultado final. A argamassa pré-fabricada destinada ao rejuntamento será preparada, seguindo as instruções do fabricante. A quantidade necessária será cuidadosamente medida e misturada em um recipiente limpo, com a adição de água conforme as orientações de cada

produto. A mistura será executada até atingir uma consistência homogênea ideal para a aplicação. Com a argamassa pré-fabricada devidamente preparada, proceder-se-á à aplicação do rejunte nas juntas entre as cerâmicas. Utilizando-se uma espátula ou desempenadeira de borracha, o rejunte será cuidadosamente pressionado nas juntas, preenchendo-as por completo e assegurando uma distribuição uniforme. Após a aplicação do rejunte, será realizado o acabamento final. Com o auxílio de uma esponja úmida, o excesso de rejunte será devidamente removido da superfície das cerâmicas, visando obter um acabamento limpo e uniforme. Esta etapa é crucial para evitar danos ao revestimento cerâmico e garantir a qualidade estética do trabalho final.

35.9. 104658 PISO PODOTÁTIL DE ALERTA OU DIRECIONAL, DE CONCRETO, ASSENTADO SOBRE ARGAMASSA. AF_05/2023 (M2)

O piso podotátil de alerta ou direcional, feito de concreto e assentado sobre argamassa, desempenha um papel crucial na garantia da acessibilidade e segurança de pessoas dom deficiência visual em espaços públicos. Este tipo de piso é projetado com relevos táteis que alertam ou orientam os usuários sobre obstáculos, mudanças de direção ou a proximidade de locais específicos. Para sua execução, é necessário seguir um processo meticuloso e cuidadoso. Inicialmente, a superfície onde o piso será instalado é preparada, assegurandose de que esteja limpa, rivelada e livre de quaisquer irregularidades que possam comprometer sua funcionalidade. Em seguida, uma argamassa apropriada é aplicada sobre essa base preparada. As peças de concreto do piso podotátil são então assentadas sobre a argamassa de maneira precisa e alinhada, garantindo a disposição correta dos relevos táteis. Cada peça é posicionada de acordo com o layout e as especificações técnicas definidas no projeto, levando em consideração as necessidades de alerta ou direcionamento dos usuários. Após o assentamento das pecas, é realizada uma inspeção minuciosa para garantir que todos os relevos táteis estejam corretamente posicionados e alinhados. Quaisquer ajustes necessários são feitos neste momento para garantir a eficácia do piso. Por fim, o condreto é devidamente curado e a superfície é limpa para remover quaisquer resíduos de argamassa. Assim, o piso podotátil estará pronto para ser utilizado, proporcionando segurança e acessibilidade para todas as pessoas que frequentarem o ambiente.

36. DRENAGEM

36.1. 94265 GUIA (MEIO-FIO) CONCRETO, MOLDADA IN LOCO EM TRECHO RETO COM EXTRUSORA, 15 CM BASE X 30 CM ALTURA. AF_06/2016 (M)

Antes de iniciar a execução das guias, é essencial realizar a demarcação e o nivelamento do local de acordo com as dimensões e alinhamentos estabelecidos no projeto. Todos os obstáculos que possam interferir na instalação das guias serão removidos, assegurando uma base adequada para a sua construção. Para a produção das guias com extrusora, serão empregados materiais de alta qualidade, incluindo cimento Portland, agregados miúdos e graúdos, água e aditivos, conforme as especificações técnicas. A mistura do concreto será preparada respeitando as proporções adequadas para garantir a resistência e durabilidade das guias. Posteriormente, as guias serão moldadas in loco por meio de uma extrusora de concreto, equipamento que possibilita a aplicação do material de forma contínua e uniforme. O concreto será alimentado na extrusora e depositado diretamente no local de instalação das guias, seguindo o traçado e dimensões estabelecidas no projeto. Após a extrusão do concreto, as guias serão niveladas e alisadas utilizando ferramentas apropriadas, visando um acabamento uniforme e estético. Em seguida, será iniciado o processo de cura do concreto, fundamental para garantir a resistência e durabilidade das guias.

36.2. 94266 GUIA (MEIO-FIO) CONCRETO, MOLDADA IN LOCO EM TRECHO CURVO COM EXTRUSORA, 15 CM BASE X 30 CM ALTURA. AF_06/2016 (M)

Antes de iniciar a execução das guias, é essencial realizar a demarcação e o nivelamento do local de acordo com as dimensões e alinhamentos estabelecidos no projeto. Todos os obstáculos que possam interferir na instalação das guias serão removidos, assegurando uma base adequada para a sua construção. Para a produção das guias com extrusora, serão empregados materiais de alta qualidade, incluindo cimento Portland, agregados miúdos e graúdos, água e aditivos, conforme as especificações técnicas. A mistura do concreto será preparada respeitando as proporções adequadas para garantir a

resistência e durabilidade das guias. Posteriormente, as guias serão moldadas in loco por meio de uma extrusora de concreto, equipamento que possibilita a aplicação do material de forma contínua e uniforme. O concreto será alimentado na extrusora e depositado diretamente no local de instalação das guias, seguindo o traçado e dimensões estabelecidas no projeto. Após a extrusão do concreto, as guias serão niveladas e alisadas utilizando ferramentas apropriadas, visando um acabamento uniforme e estético. Em seguida, será iniciado o processo de cura do concreto, fundamental para garantir a resistência e durabilidade das guias.

37. CARAMANCHÃO 01

37.1. 96523 ESCAVAÇÃO MANUAL PARA BLOCO DE COROAMENTO OU SAPATA (INCLUINDO ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF_06/2017 (M3)

O processo de construção das sapatas inicia-se com a marcação precisa do local, seguindo as diretrizes do projeto estrutural da edificação. Em seguida, os trabalhadores iniciam a escavação manual utilizando pás, enxadas e picaretas. O solo é retira do cuidadosamente, camada por camada, até atingir a profundidade e dimensões especificadas no projeto. Durante todo o processo de escavação, é fundamental manter o controle rigoroso da profundidade e do nivelamento do terreno, parantindo assim que as sapatas sejam construídas de acordo com as especificações estabelecidas. Além disso, para assegurar um ambiente de trabalho seguro e livre de obstruções, os entulhos e detritos resultantes da escavação são removidos do local. Em seguida, o fundo da sapata é nivelado e compactado adequadamente, preparando-o para receber a concretagem. Essa etapa é crucial, pois a base nivelada e compactada proporcionará a estabilicade necessária para a fundação da estrutura. Assim, a concretagem é realizada para formar a base sólida sobre a qual a edificação será apoiada, concluindo ass m o processo de construção das sapatas.

37.2. 101616 PREPARO DE FUNDO DE VALA COM LARGURA MENOR QUE 1,5 M (ACERTO DO SOLO NATURAL). AF_08/2020 (M2)

Para garantir a ad equada execução da estrutura, é imprescindível que fundo da vala seja devidamente compactado e nivelado.

37.3. 96620 LASTRO DE CONCRETO MAGRO, APLICADO EM PISOS, LAJES SOBRE SOLO OU RADIERS. AF_08/2017 (M3)

O lastro de concreto magro será constituído por uma composição de cimento Portland, areia, prita e água. Essa mistura proporciona um concreto com baixa resistência mecânica, ideal para nivelamento e regularização do terreno, sem comprometer a integridade da estrutura final. Sua aplicação ocorrerá sobre o terreno devidamente compactado e nivelado, atuando como uma base sólida e uniforme para a construção.

37.4. C1400 FORMA DE TÁBUAS DE 1" DE 3A. P/FUNDAÇÕES UTIL. 5 X (M2)

As tábuas serão confeccionadas em madeira de lei do tipo 3A., garantindo resistência e durabilidad e adequadas para suportar as pressões exercidas pelo concreto. Cada tábua terá 1 polegada de espessura (aproximadamente 2,54 centímetros) para proporcionar a rigidez necessária. O comprimento e a largura das tábuas serão dimensionados conforme as dimensões da fundação a ser construída. Além disso, as tábuas serão devidamente lixadas e niveladas, garantindo uma superfície lisa e uniforme para o despejo do concreto, o que contribui para a obtenção de uma superfície final de concreto sem imperfeições indesejadas.

A forma de tábuas de 1" de 3A. será montada no local da obra, formando o molde no formato da fundação desejada. Antes de despejar o concreto, será verificado se as tábuas estão devidamente alinhadas e niveladas, garantindo assim a precisão das dimensões da fundação.

Após o despejo do concreto, as tábuas serão deixadas no lugar até que o concreto atinja a resistência necessária para suportar sua própria carga. Em seguida, as tábuas serão removidas cuidadosamente, deixando exposta a fundação de concreto. Este processo permite obter uma fundação sólida e bem acabada, pronto para suportar a estrutura a ser construída sobre ela.

37.5. C1401 FORMA DE TÁBUAS DE 1" DE 3A. P/SUPERESTRUTUR. UTIL. 2 X (M2)

As tábuas serão confeccionadas em madeira de lei do tipo 3A., garantindo resistência e durabilidade adequadas para suportar as pressões exercidas pelo concreto. Cada tábua terá 1 polegada de espessura (aproximadamente 2,54 centímetros) para proporcionar a rigidez necessária. O comprimento e a largura das tábuas serão dimensionados conforme as dimensões da estrutura a ser construída. Além disso, as tábuas serão devidamente lixadas e niveladas, garantindo uma superfície lisa e uniforme para o despejo do concreto, o que contribui para a obtenção de uma superfície final de concreto sem imperfeições indesejadas.

A forma de tábuas de 1" de 3A. será montada no local da obra, formando o molde no formato da estrutura desejada. Antes de despejar o concreto, será verificado se as tábuas estão devidamente alinhadas e niveladas, garantindo assim a precisão das dimensões.

Após o despejo do concreto, as tábuas serão deixadas no lugar até que o concreto atinja a resistência necessária para suportar sua própria carga. Em seguida, as tábuas serão removidas cuidadosamente, deixando exposta a estrutura de concreto.

37.6. 92762 ARMAÇÃO DE PILAR OU VIGA DE ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO UTILIZANDO AÇO CA-50 DE 10,0 MM - MONTAGEM, AF_06/2022 (KG)

A utilização de barras de aço CA-50 de 10,0 mm na armação de pilares ou vigas em estruturas de concreto armado é essencial para conferir resistência e estabilidade à edificação. Para isso, as barras serão cortadas e dobradas conforme as dimensões e o projeto estrutural, utilizando equipamentos especializados que garantem precisão e qualidade na conformação das armaduras. Após o processo de corte e dobra, as barras serão montadas de acordo com o projeto, posicionando-as corretamente para garantir a distribuição adequada das cargas e a conformidade com as especificações técnicas estabelecidas. Durante essa etapa, é crucial garantir que a disposição das barras